Texture Virtualization for Terrain Rendering

Daniel Cornel*
Vienna University of Technology

Figure 1: Demonstration of CUDA-accelerated virtual texturing by Hollemeersch et al. [Hollemeersch et al. 2010] using aerial photography
of the Antelope Island State Park, Utah. Image retrieved from [Multimedia Lab 2011].

Abstract

Virtual texturing is a technique that allows the use of arbitrarily
large textures within the limited physical video memory. Through
a paging and streaming system, only the currently visible parts of a
mipmap chain are stored in the video memory while the rest of the
data may reside in any other memory or storage device. Not only
does this enable the use of unique and very detailed textures, but
makes high resolution images such as satellite or aerial photography
data usable in real-time applications without further modifications
or downsampling.

This work sketches the virtual texturing pipeline and discusses the
benefits and limitations of it. Due to the nature of terrains in real-
time applications, the discussed methods are of particular impor-
tance for performant and photorealistic terrain rendering and are
thus viewed with regard to these properties and needs. Special em-
phasis is devoted to recent developments in virtual texturing and
possible future fields of application as well as acceleration tech-
niques.

Keywords: terrain rendering, virtual texturing, clipmap

1 Introduction

Realistic real-time rendering of terrain surfaces has been subject to
research for the past few years, because the unique characteristics of
terrains restrict the application of conventional rendering methods.

*e-mail: daniel.cornel @tuwien.ac.at

In contrast to regular objects placed in the scene and represented by
a closed surface with finite extents, a terrain represents a very large
surrounding that extends over the whole scene. Due to the large
extents, it is most often partially, but never completely visible, with
some regions very close to the eye and some regions very far away.
Thus, both microstructure details for the nearby and macrostructure
details for the more distant surrounding are needed for the surface to
appear as a landscape shaped by nature without artifacts or artificial
repetitions.

Since the introduction of texture mapping, textures have been a very
important way of adding visual details to geometry. However, due
to the size of terrains and the limitations of texture size in hardware,
mapping a single texture containing the whole terrain surface to the
geometry is not feasible. There have been several approaches to
overcome this problem by synthesizing the terrain texture through
either procedural texture generation or multi-texturing. The latter
method has proven very suitable for real-time application and has
been used in game engines such as the CryENGINE 2 [Mittring
2008] and the Unreal Engine 3 [Epic Games 2012]. Sophisticated
implementations such as procedural shader splatting [Andersson
2007] used in the Frostbite Engine procedurally generate several
low- and high-frequency textures which are blended in the render-
ing step, leading to very few visible repetitive patterns due to the
vast amount of possible texture combinations. Texture streaming
can be used to reduce the number of texture parts that need to be
stored in the video memory, however in naive implementations,
this requires pre-generated information of which parts to stream
for which part of the scene, based on the view point. A downside
of multi-texturing approaches is that, depending on the number of
textures used, the resulting image might either look washed out or
require a lot of texture lookups. A second limitation is the depen-
dence on a regular tessellation of the terrain geometry such that the
texturing can be done for individual tiles of the terrain.

In the end, terrains can be textured quite aesthetically with texture
synthesis approaches nowadays, but only with blended synthetic
texture tiles. With an increasingly high degree of realism achievable
in rendering and the ability to generate very high resolution images,
e.g. by aerial photography, methods are needed to use these images

as textures in photorealistic rendering applications. Besides the ob-
vious requirement to work within limited video memory, such a
method has to perform in real-time on common hardware and has to
offer the same visual quality as common texture mapping. Further-
more, texturing should be independent from the mesh tessellation
without constraints on geometry or texture data. The first concept
to accomplish this was the clipmap [Tanner et al. 1998]. Clipmaps
make it possible to store only a needed subset of a mipmap chain in
the video memory, thus allowing to use arbitrarily large textures in
theory. As this concept is a milestone in texture virtualization, the
idea of clipmaps is sketched in Section 2.

The further development of clipmaps finally led to extensive adap-
tations of the content creation and rendering pipelines, summarized
under the term virtual texturing. Most of these modifications have
already been proposed in 2004 [Lefebvre et al. 2004]. However,
it was not until the announcement of the video game Rage by id
Software and its eventual release in 2011 that virtual texturing re-
ceived wider attention. Thus, literature concerning the topic is
sparse, which is why the MA thesis by Mayer [Mayer 2010] cur-
rently serves as the most comprehensive publication on the matter.
Mayer also proposes standardized terms and a reference implemen-
tation with profound evaluations. This serves as reference for the
general structure of a virtual texturing system which is discussed in
detail in Section 3. Another recent publication by Neu [Neu 2010]
providing a similar reference implementation is also taken into ac-
count. The aim of this report is to give an insight into the concept of
a state-of-the-art virtual texturing system as well as its open prob-
lems. As the contributions of Mayer and Neu date back to 2010,
an overview over recent developments and applications of virtual
texturing is given in Section 3.5.

2 Clipmaps

The clipmap introduced by Tanner et al. [Tanner et al. 1998] is a
clipped mipmap that holds only the subset of the mipmap that is po-
tentially visible in the current frame. The idea behind the clipmap is
that with a very large texture, all data of a mipmap is never needed
in one frame. As the mipmap level selection for texture sampling
aims for a 1:1 ratio between pixels and texels, the window size di-
rectly limits the number of texels used from a mipmap level. Thus,
the mipmap levels larger than the stack size (see Figure 2), i.e. the
window size plus a constant margin, can be clipped and do not need
to reside fully in the video memory.

In contrast to the constant window size, the view point will likely
change during the execution of the application, so a clipmap stack
has to be updated continuously to contain the needed data. A clip
center is calculated directly from the view point and specifies a
center of interest in texture space and, through the clipmap stack,
rings of decreasing texture resolution around it. If the size of a
mipmap level is greater than the stack size, a region of the stack
size around the clip center is cut out of the mipmap level and stored
in the clipmap stack. If the mipmap level is smaller than the stack
size, it covers the whole texture at a low resolution and is stored in
the clipmap pyramid. This way it can be used as a fallback lookup
texture for every region of the texture if the desired level of detail
of the region around the clip center is not yet available to the video
card.

This concept is analogous to the virtual memory management of op-
erating systems where contents of the main memory are outsourced
to a cheaper hard disk space. Together with a page table keeping
track of all outsourced memory pages, this allows to address a mem-
ory space much larger than the physical main memory. Instead of
virtual memory, virtual textures are handled now and their smallest

Stack Size

Clipmap Pyramid

Figure 2: Illustration of a clipmap. Instead of the whole mipmap
chain (blue), only the clipmap stack (green) and the clipmap
pyramid are stored in the video memory. Image retrieved from
[NVIDIA Corporation 2007].

units are uniformly sized texture tiles which are loaded from the
hard disk first and then streamed from the main memory. This in-
troduces several problems, like the determination of which tile to be
streamed, scheduling of the streaming and addressing of the tiles.

It is obvious that the coherence of the potentially visible tiles be-
tween two frames can be used to significantly reduce streaming.
As the view point moves, neighboring tiles of the currently visible
ones are very likely to be needed soon, so they will be streamed
when possible. If the new tiles are needed for rendering before
streaming is complete, a lower resolution of the desired tile is used
as fallback texture. For this lower resolution is included in the next
lower clipmap level, it is important to stream the required textures
from bottom up, so fallback tiles of all required tiles are accessible
first. To access tiles of the complete mipmap in the clipmap system,
Tanner et al. [Tanner et al. 1998] proposed a toroidal addressing
scheme for clipmap levels and tiles such that after change of the
clip center, the new tiles can be appended to the ones residing in
the video memory easily. With the proposed wraparound address-
ing, however, the limited precision and numeric range supported in
hardware limit the maximum number of addressable mipmap levels
and therefore the size of the whole texture. This is why the au-
thors did a second virtualization step of the clipmap itself, based on
the observation that a single polygon usually only requires samples
from very few clipmap levels and thus it is sufficient to store a vir-
tual clipmap with this limited range in the video memory. For this
additional virtualization, a new addressing hardware was proposed
such that the clipmap system could be implemented in hardware.

A core problem of clipmaps is the tile determination by the center of
interest. The spatial relation between the clip center and the mapped
tile does not take into account any occlusion and is not even neces-
sarily unambiguous. As a result, a major part of the tiles stored in
the video memory is not visible because the corresponding geome-
try is occluded or outside the view frustum. This and the hardware
requirements for the complex addressing system dampened the im-
pact of clipmaps on terrain rendering for games, but the guiding
idea of virtualization has been refined ever since. However, a note-
worthy implementation of modified clipmaps called MegaTextures
is Splash Damage’s Enemy Territory: Quake Wars released in 2007
[Kalra and van Waveren 2008]. Clipmaps have been proven very
suitable for geometry virtualization as geometry clipmaps where
vertex buffers rather than textures are used for storage. With geom-
etry clipmaps, terrain deformation [Crause et al. 2011] and adaptive
level-of-detail systems [Losasso and Hoppe 2004; Asirvatham and
Hoppe 2005] can be designed very efficiently.

32-bit virtual tile ID
(TileX, TileY, MipLevel)
needed by this pixel

Indirection Texture

Physical tile cache texture

Rendered result

Figure 3: The virtual texturing pipeline. The IDs of all needed tiles are stored in the needbuffer. For rendering, the indirection texture is used
to translate virtual to physical texture coordinates. With these, the tiles stored in the video memory can be accessed for texturing. Image
retrieved from [Hollemeersch et al. 2010].

3 Virtual Texturing

Clipmaps were introduced at the time when hardware was not pro-
grammable and streaming of tiles was expensive due to CPU-GPU
bandwidth constraints. This is why the virtualization of textures
through clipmaps could not be used for general rendering applica-
tions back then. Although the video memory size and bandwidth
have increased in today’s hardware, this is no solution to the prob-
lem as the texture size is still by far too large and tendentially grow-
ing. Instead, the solution is to reduce the streaming cost through re-
fined, adaptive tile determination and management processes to fit
existing bandwidth constraints. The fundamental steps to achieve
this have been sketched by Lefebvre et al. [Lefebvre et al. 2004]
and Barrett [Barrett 2008] who provide efficient and complete vir-
tual texturing systems to solve the streaming problem. After split-
ting the physical texture including its whole mipmap chain into tiles
of uniform size, the untextured geometry is rendered once to output
the visible texture coordinates of the geometry. These coordinates
are stored in a buffer that is read back to the CPU to determine the
visible texture tiles, which are then uploaded to the video memory.
In a second, final rendering step, the virtual texture coordinates of
the geometry are translated to physical texture coordinates point-
ing to the uploaded tile in the video memory. For the translation,
an indirection texture is maintained that stores all physical texture
coordinates at the positions of their virtual texture coordinates for a
fast lookup.

So, the major differences to clipmaps are an improved screen-space
determination of visible tiles and the use of an indirection texture
analogous to a page table rather than toroidal addressing based on
the mipmap level. It is important to see that, despite the name, vir-
tual texturing is a whole system rather than just a texturing step.
The whole pipeline in its current form can be separated into differ-
ent stages (see Figure 3) which are outlined in this section.

3.1 Texture Creation

Virtual texturing requires a complete mipmap chain divided into
uniformly sized tiles that are stored in inexpensive memory. For
correct filtering at the tile borders, additional data has to be stored
for each tile. Although a new tool chain for splitting and merging is
needed to create these tiles, it offers several advantages compared to
texturing methods mentioned before. Artists or users have the pos-
sibility to work with the texture as a whole or just with parts of it.
This also allows the use of already existing textures without mod-
ification and, in contrast to clipmaps, is not limited to large-scale

textures. Current virtual texturing systems are not updated using
spatial information in texture space but visibility information, so
any textures can be merged together to a huge texture atlas, avoid-
ing frequent texture changes when rendering. With this, unique
texturing as used in Rage (see Section 3.5) is possible, meaning
that every surface of a scene can be textured uniquely with a single
texture.

Mayer [Mayer 2010] devotes a lot of attention to further topics of
the texture creation which cannot be covered in this work. These
include efficient UV unwrapping for unique textures, packing of
tiles in a texture atlas, optimal tile sizes, data reduction and texture
compression.

3.2 Determination of Visible Tiles

To determine which tiles have to be stored in the video memory,
the first step of the system is to analyze which tiles are (potentially)
visible in the current frame. Also, a prediction of which tiles will
be needed in the succeeding frames is desirable to efficiently pre-
cache them. To get the visibility information of the scene, it is
rendered to a target that can be read back to the CPU in a first pass.
The read back is usually a bottleneck of the system, which is why
acceleration techniques are crucial for a high performance.

3.2.1 Generation and Analysis of Visibility Information

For the determination of the visible texture regions, Lefebvre et al.
[Lefebvre et al. 2004] propose a two-pass system where the geome-
try is rendered to a texture load map in texture space in the first pass.
This is a map of the texture space that contains visibility informa-
tion of all tiles. Then, tiles are probably being used if a part of the
geometry was written to the corresponding pixel of the texture load
map. To determine the tiles exactly, numerous subsequent level-of-
detail calculations are needed to address the right tile or tile area.
This approach allows a conservative tile determination, because oc-
clusions are not taken into account. In practice, it is no longer used
for tile determination because of the high amount of necessary cal-
culations and the less-than-ideal results and is thus not discussed in
detail.

A more natural and exact two-pass approach proposed by Barrett
[Barrett 2008] is to render the visible geometry in screen space as
usual to the needbuffer [Neu 2010] in the first pass. Instead of ap-
plying the real texture to the geometry, however, the texture coordi-
nates as well as the estimated mipmap level are written to the need-

buffer (see the leftmost image of Figure 3 for an example). This
information, the tile ID, unambiguously identifies each tile of the
virtual texture. Since a tile is usually required by several fragments
- especially for linearly mapped terrains -, the result can be stored
in a buffer smaller than the actual display size, thus reducing both
rendering and read-back effort. This is because the needbuffer has
to be read back to the main memory to analyze the data on the CPU,
which induces additional data traffic through the whole system. In
this analysis, a list of all required tiles is created and then handed
to the management process. An important point stated by Mayer
[Mayer 2010] is that the manual mipmap estimation in the shader,
done with the dFdx and dFdy functions, does not necessarily pro-
duce the same result as the mipmap selection by OpenGL, since it
is not closely specified. For cases like this, the new OpenGL exten-
sion ARB _texture_query_lod can be used which returns the result of
the OpenGL mipmap selection as if a texture lookup had been per-
formed. The new shader function provided at fragment level is not
only more accurate, but also faster than the manual mipmap level
calculation.

A drawback of both two-pass solutions is that all geometry has to
be processed twice which causes considerable additional effort. Al-
though the needbuffer resolution can be smaller than the display
size and low detail geometry can be used for the first pass, it re-
mains computationally expensive. With multiple render targets,
doing both the tile determination and the final rendering in a sin-
gle pass is possible. Then, instead of doing the tile determination
for the current frame before rendering it, the set of tiles calculated
in the last frame is used. This might not be exact, but in practice, the
deviations will be imperceptible because of the temporal coherence
between the needbuffers of two succeeding frames. Even more im-
portant, the streaming process cannot provide the tiles just required
immediately but with a few frames delay, so even the two-pass ap-
proach is lagging behind. A more concerning problem is that with
multiple render targets, the needbuffer has to have the same size as
the main render target, leading to significantly increased data trans-
fer between the GPU and CPU.

3.2.2 GPU-Accelerated Needbuffer Processing

To reduce the read-back delay, Hollemeersch et al. [Hollemeer-
sch et al. 2010] propose a GPGPU method for data reduction with
CUDA before downloading the buffer. Although their implementa-
tion relies on multiple render targets, this method can be used like-
wise in the two-pass approach. Since the needbuffer tends to con-
tain a lot of redundant information because of the spatial coherence
between neighboring pixels, the idea is to generate a buffer that
only contains unique tile IDs. Usually, this buffer is much smaller
than the original needbuffer, so the read back is faster. One result of
this implementation is depicted in Figure 1, using large-scale aerial
photography to reconstruct an island in real-time.

It has to be mentioned that evaluations done by Hollemeersch et
al. [Hollemeersch et al. 2010] do not show any difference in per-
formance when using the full or a reduced needbuffer resolution.
In contrast, the OpenCL implementation of this method done by
Mayer [Mayer 2010] performs significantly better with a lower res-
olution. This can have several causes, including internal API differ-
ences between CUDA and OpenCL as well as hardware generation
and vendor limitations. Hollemeersch et al. point out that depend-
ing on the hardware, CUDA might either just lock the data of the
needbuffer for use or copy it, which of course would increase the
effort. Finally, it is noteworthy that the implementation of virtual
texturing by Neu [Neu 2010] also uses multiple render targets and
therefore the full-sized needbuffer, but does not process the data
before the read back. Yet, the presented results suggest an overall

high visual quality of the method, which has been evaluated for var-
ious existing indoor and outdoor game levels to proof suitability for
video games.

3.3 Tile Management and Streaming

The tile management stage is the main component of the texture
virtualization pipeline because this is where access to the virtual
texture is provided. It receives a list containing the IDs of all tiles
needed for the current frame from the previous tile determination
stage and ensures their availability. For this, three tasks are per-
formed, namely maintenance of an indirection texture, loading and
streaming of tiles.

3.3.1 Maintenance of the Indirection Texture

The indirection texture, comparable to a page table, is a structure
that translates virtual texture coordinates into physical ones, which
is necessary because the tiles in the physical video memory are
stored in a tile cache. This tile cache is a large texture subdivided
into addressable frames of the same size as tiles. Since the tile
cache is not large enough to store all tiles of the virtual texture, the
contents will change constantly depending on the currently visible
surfaces. It is the task of the indirection texture to keep track of all
these changes. Therefore, each tile of the virtual texture including
its mipmap chain is represented in the indirection texture by one
entry. For the rendering step, entry means texel because a physical
texture or a texture array [Mittring 2008] is generated. However, as
the structure is needed in both the management stage and the ren-
dering, it might also be represented by a quad-tree on the CPU side.
The quad-tree also has to store state information for each tile such
as if it is already loaded. The position of a tile in the virtual texture
corresponds to its position in the indirection texture, which is why
the tile ID stored in the needbuffer can be used to directly look up
the value of the indirection texture for this tile.

For each tile requested by the tile determination stage it is checked
if it already resides in the tile cache. If this is not the case and
it is not currently being loaded or streamed either, streaming of it
has to be initiated. All tiles to be streamed are stored in a priority
queue which is constantly updated according to specified criteria
such as the distance to the view point or the frequency of requests
for this tile. The tile priority can be seen as a measure for the visual
impact of this tile or its absence on the scene. Generally, tiles of
lower resolution have a higher priority because they can be used as
fallback textures, which leads to a progressive increase of details
all over the scene at runtime. If a conservative tile determination
or a tile prediction is implemented, these additional tiles can be
pre-cached as well if there are spare capacities. Neu [Neu 2010]
devotes much attention to various page priority heuristics and offers
detailed evaluations of the visual quality using Structural Similarity
as a measure. Additionally, he introduces the concept of a Look-
Ahead Camera used to track the current camera motion and predict
the tiles needed in the next frames.

3.3.2 Loading of a Requested Tile

Before the tile of highest priority can be streamed, it has to be
loaded from the secondary storage. Doing this in near real-time
is a non-trivial task due to the variety of hardware configurations
a developer has to consider as target system. In a simple scenario,
all tiles residing on the hard disk drive are loaded into the main
memory and are then ready to be streamed. Even in this case, the

diversity of memory interface, size and speed as well as storage de-
vice type (HDD, solid-state drive) and interface is huge. A minor
improvement would be to create a second caching level in the main
memory to pre-load neighboring tiles of recently loaded once in
advance to lessen the impact of a slower hard disk on the system.

Tiles might also be stored on portable or optical storage devices. In
the case of video games for consoles, tiles might have to be loaded
directly from a DVD which performs quite poorly. Not to speak
of the limited storage capacity of DVDs that made it a necessity
to store the game Rage and the heavily compressed texture data
on three dual-layer DVDs that have to be swapped at runtime. To
optimize reading from optical devices, larger chunks have to be read
sequentially, thus influencing the choice of the tile size [Mittring
2008]. A deeper insight into loading terrain textures from slow
storage devices is given by van Waveren [van Waveren 2008].

Yet another and particularly promising way of data acquisition is
over Internet. Mittring already presented the idea of streaming
whole game levels for multiplayer games as an alternative to op-
tical devices. An actual realization of streaming over Internet has
been provided recently by Andersson and Goransson [Andersson
and Goransson 2012] for a WebGL implementation of virtual tex-
turing. It is imaginable that for portable devices, virtual texturing
with network streaming will be used for tasks such as displaying
satellite photos in GPS navigation services. In such cases, a near
real-time streaming to the video memory is usually not a priority,
so delays due to the network transfer of tiles and the limited com-
putational power to process them are bearable.

3.3.3 Compression and Encoding of a Tile

After the tile has been loaded into the main memory, depending
on its compression (e.g. JPEG, PNG), it has to be decompressed.
Benchmarks by Mayer [Mayer 2010] show significant performance
differences between different compressions and decompressing li-
braries which have to be taken into account. Generally, JPEG offers
both higher (lossy) compression in the secondary storage and faster
decompression compared to PNG. After decompressing the tile, it
is usable by the GPU, but relatively large in size. The streaming
delay is usually the bottleneck of the virtual texturing pipeline, so
a texture compression that is supported by the GPU such as DXT
is suggested [Hollemeersch et al. 2010; Mayer 2010]. With DXT,
a significant reduction of the upload bandwidth and video mem-
ory consumption can be achieved. A promising addition to the
GPGPU utilization for virtual texturing suggested in the contribu-
tions of both Hollemeersch et al. and Mayer is texture transcoding
to DXT on the GPU. Instead of decompressing the tiles on the CPU,
then recompress them to DXT and streaming them, the compressed
(JPEG) tiles can be transcoded from their current encoding to DXT
on the GPU. Since JPEG offers a much better compression ratio
than DXT, the upload bandwidth can be further reduced. The GPU
transcode, however, recently fell out of favor when used in Rage
to accelerate streaming, at which it occasionally failed (see Section
3.5).

3.3.4 Streaming of a Tile

Streaming itself is done asynchronously in an own thread that con-
tinuously checks for loaded and possibly CPU transcoded tiles. If
such a tile exists, a frame in the physical tile has to be found. In
the simple case, the tile cache is not yet full and the tile can be up-
loaded to one of the cache’s empty frames. Once the cache is full,
it has to be determined whether to replace one of the existing tiles
in the cache or to discard the already loaded tile. The latter should

happen when all cached tiles are currently needed and each of the
tiles has a higher priority than the recently loaded one. To keep
track of visibility information and e.g. the last query of a tile for
least recently used scheduling, the additional tile attributes can be
stored in the CPU-side representation of the indirection texture.

If the tile passes this last test, it is finally uploaded to the physical
memory. Then, the indirection texture has to be updated accord-
ingly. The entry representing the new tile has to be set such that
it stores the position of the tile cache frame it resides in as well as
its original mipmap level which is already stored in the information
retrieved from the needbuffer. If another tile has been replaced for
the new one, all entries of the indirection texture pointing at this
tile cache frame have to be changed to point to the frame of the
most appropriate fallback tile for the replaced one. This is the tile
of the next lower virtual mipmap level that covers the area of the
previous tile and resides in the cache. Thus, uploading the low-
est mipmap level tile covering the whole virtual texture in a single
tile guarantees a fallback tile for each tile at all time. The last step
of the management stage is to upload the changes of the CPU-side
indirection texture to the GPU. Figure 3 shows an example of an in-
direction texture. It can be seen that the outer, currently not visible
regions of the virtual texture are mapped to a few low-resolution
tiles, apparent through the large homogeneous areas.

3.4 Rendering

In the last stage of the pipeline, the generated data, namely the tile
cache texture and the indirection texture, has to be used to tex-
ture the visible geometry correctly. As the per-vertex texture co-
ordinates of the geometry correspond to the location in the virtual
texture, a translation step comparable to the address translation of
clipmaps is needed. Instead of using toroidal addressing, a lookup
into the indirection texture is used, which is depicted in Figure 4.

Physical tile cache

P

W WMEIE D

Quad-tree representation of the indirection texture

Figure 4: Translation from virtual to physical texture coordinates.
Image retrieved from [van Waveren and Hart 2010].

3.4.1 Address Translation with the Indirection Texture

The correct texture coordinates for the physical texture depend on
the position of the tile in the tile cache that covers the relevant re-
gion as well as the internal offset within this tile. Since each texel
of the indirection texture corresponds to a tile of the virtual texture,
an unfiltered lookup can be performed with the interpolated per-
fragment texture coordinates at fragment stage. This fetch already
returns the tile position in the cache because this is exactly what

the indirection texture stores. Now it should also be clear why the
fallback tiles are propagated down to all children in the quad-tree
representation at indirection texture updates. It guarantees that for
each virtual texture coordinate, a tile in the cache can be found,
even if it is of low resolution.

Calculating the internal offset is a bit more difficult as it is rela-
tive to the virtual tile position and thus dependent on the original
mipmap level of the tile. This is why the mipmap level has already
been written to the indirection texture when streaming the tile. The
mipmap level can be stored as the third component of the indirec-
tion texture and is fetched together with the physical tile position.
The virtual texture coordinates then have to be biased and scaled
according to the mipmap level. An exemplary derivation of the so-
lution is presented by van Waveren and Hart [van Waveren and Hart
2010] (see Figure 4). However, shader implementations with con-
straints such as quadratic power-of-two textures can use arithmetic
tricks to perform the translation with very few instructions [Barrett
2008; Mittring 2008; Hollemeersch et al. 2010].

With the physical texture coordinate retrieved, a second lookup into
the tile cache texture can be performed to get the texture informa-
tion. From then, rest of the rendering is done as usual. At this
point it should be stated that the format or content of the tiles can
be arbitrary. Thus, all types of data such as normal, specular, dis-
placement, light and shadow maps and - although of questionable
practicability - even indirection textures [Mayer 2010] can be vir-
tualized and used in the shader. If the tile cache is represented by
a texture array rather than a 2D texture, it is easy to store tiles of
different attributes for the same surface at the same x and y coordi-
nates in the texture array but on different layers. Then, the texture
coordinate translation has to be done only once for a lookup in all
desired layers.

3.4.2 Texture Mapping with Filtering

When sampling a texture, filtering is of course desirable. Relying
on the hardware filtering, however, leads to artifacts at the tile bor-
ders. Residing in the tile cache, the tile is surrounded by arbitrary
tiles, so all information needed for bilinear or anisotropic filtering
has to be included in the tile itself. Doing the filtering manually
in the shader is possible, but requires to translate the texture co-
ordinates for each sample, leading to an unfeasible overhead [Neu
2010]. This is why in Section 3.1 it has already been stated that
the tile creation tools need to append borders for correct filtering,
as the neighborhood of a tile border has to be taken into account for
the filtering. However, this either reduces the usable area of the tile
or increases the tile size, both leading to potentially higher upload
bandwidth for the sake of visual quality. When using DXT encoded
tiles, it is necessary to append full 4 x 4 texel blocks to the border
for correct filtering [Mittring 2008].

Trilinear filtering generally requires a second mipmap level to sam-
ple from. Barrett [Barrett 2008] proposes the use of a physical tile
cache with one additional mipmap level to store the cache contents
in half size, which is sufficient because virtual texturing by design
already samples from the best matching level. This enables the us-
age of the graphic API’s trilinear filtering, but is, according to Mit-
tring [Mittring 2008], an unnecessary increase of video memory
consumption (by a quarter) that does not pay. The reason for this
is that the half-resolution data created for the mipmap level already
exist somewhere in the system, maybe even in the tile cache. Thus,
Neu [Neu 2010] suggests to rely on the API’s bilinear filtering and
to do the trilinear filtering manually in the fragment shader. For
this, twice the amount of texture lookups into indirection texture
and tile cache are needed. Additionally, the tile management has

to ensure that the required tile of next-lower resolution is cached,
too, so a slightly modified tile determination algorithm requests an
additional direct parent tile of each visible tile. This increases the
streaming effort and the number of tiles needed in the tile cache, but
a portion of the additional tiles will already be cached as fallback
textures.

3.4.3 Reduction of Pop-In Artifacts

Although at this point the virtual texturing system should behave as
if the large-scale texture was used with common texture mapping,
one deviation from the virtual ground truth is hard to eliminate.
The whole pipeline is designed for asynchronous updates such that
it never stalls on uploads or read-backs. Thus, whenever a task
is not yet finished and the rendering starts, it has to handle those
unfinished jobs, which is what the fallback tiles are used for. The
faster the pipeline performs, the faster all textures are available to
the shader for the desired output. A last question is how to behave
when the streaming of a new tile has finished. If the new tile is used
for texturing straight away in the next frame, the higher detail of the
tile will pop in suddenly in a disturbing manner. It is similar to the
pop in of level-of-detail algorithms, which is dealt with by forcing
a smooth transition of the levels at runtime, e.g. by blending the
results of both levels.

In virtual texturing, blending can be used easily if trilinear filtering
is used, since this already implements gradual blending of textures.
Depending on the time since the arrival of the new tile, the lower-
resolution tile is weighted manually to force the smooth transition
to the higher detail [Mayer 2010]. For blending with bilinear fil-
tering only, van Waveren and Hart [van Waveren and Hart 2010]
propose dithered updating of the tile cache. This means that each
frame, only a part of the new tile is uploaded and combined with
the lower-resolution tile. For this, the region of the lower-level
tile that is covered in the new tile is upsampled and stored in the
tile cache. Then, this tile is gradually updated with portions of the
higher-resolution tile each frame until the new contents completely
replaced the old ones. This, of course, again leads to more stream-
ing and delayed streaming of other tiles, so a good compromise has
to be found.

3.5 Recent applications

In the preceding sections, the complete design of a state-of-the-art
virtual texturing system including acceleration techniques has been
presented. The structure is mainly based on the contributions of
Mayer [Mayer 2010] and Neu [Neu 2010], which both date back
to 2010. Since then, virtual texturing has become a valuable tool
for the terrain rendering in large-scale applications, including but
not limited to video games [van Waveren and Hart 2010; Widmark
2012] such as the popular video game Rage. This section is devoted
to these recent developments. The aim is to give an overview over
specific applications of the presented system in the already wide
field of texture virtualization. A particularly interesting topic is the
virtualization of general data such as geometry or volume data.

3.5.1 id Software’s Rage

Since its announcement in 2007, the video game Rage by id Soft-
ware has been eagerly anticipated because of the use of texture vir-
tualization. In contrast to the clipmap-like MegaTextures imple-
mentation used for terrain texture virtualization in the games En-
emy Territory: Quake Wars and BRINK by Splash Damage, Mega-

Textures have been extended to a complete virtual texturing system
for Rage [van Waveren 2009]. Right after the release in 2011, how-
ever, a lot of PC customers had severe troubles with the rendering
and especially the virtual texturing in the game. Besides tearing
and glitches that showed wrong tiles scattered all over the screen,
the main causes of artifacts were tile popping and the generally slow
streaming of tiles [Burnes 2011]. In many cases, only fallback tiles
were shown and obviously never replaced.

For this report, the game has been tested at 1920 x 1200 pixels
screen resolution on a system including a GeForce GTX 480 video
card, Intel i7-950 CPU, 12 GB of main memory and a solid-state
drive. With this, a 180 degree turn in game took approximately
five seconds to replace all low-resolution fallback textures. Addi-
tionally, even the tiles of higher resolution looked blurry. To fix
these problems, a game patch as well as a reference to console com-
mands that change virtual texturing behavior such as the tile cache
size were published. After applying both patch and configuration
changes, the visual quality of the rendering increased drastically to
the point where no more popping artifacts or fallback textures were
visible on the test system.

Figure 5: Screenshot of the virtually textured terrain in Rage as pre-
sented at the SIGGRAPH ’09. Image retrieved from [van Waveren
2009].

According to Burnes [Burnes 2011], the cause of the initial perfor-
mance issues is a biased adaptive quality regulation for PC systems.
On the console platforms the game ran fine from the start - despite
the higher loading latency from DVDs as stated in Section 3.3, be-
cause the hardware is uniformly specified and the system could be
tweaked to fit the hardware requirements. In contrast, the variety
of PC hardware combinations made it a necessity to dynamically
adapt parts of the pipeline to the hardware at runtime to a prede-
fined upper level to prevent side effects. This also includes GPU
transcoding. As mentioned before, the purpose of GPU transcoding
is to take work load off the CPU by decompressing loaded textures
on the GPU. Obviously, this has a huge impact on the overall perfor-
mance in Rage, so with the patch, a possibility is given to limit the
number of GPU transcodings per frame or to disable it completely.
Rage seems to use the GPU to capacity already so that the hardware
acceleration proposed by Hollemeersch et al. [Hollemeersch et al.
2010] in fact slows down the system. This might be due to the fact
that JPEG-like decompression is hard to parallelize and thus cannot
benefit substantially from a GPU implementation.

Rage can be considered a milestone in texture virtualization not
only because of its general extent and performance, but because it

also virtualizes the small-scale textures for unique texturing. The
ambitious aim to use a unique texture for each piece of geometry in
the scene can partially be blamed for the game’s bumpy start since
the amount of tiles that have to be streamed each frame is massive.
It is all the more surprising that id Software finally managed to im-
plement it at an interactive frame rate and overall impressive quality
(see Figure 5). Yet, while this allows all textures to be treated in the
same way, the visual quality does not benefit very much from it
in Rage compared to recent games with conservative texture map-
ping for smaller objects. The benefit of texture virtualization for
the obviously large terrain textures with regards to the high level of
detail compared to multi-texturing approaches, on the other hand,
is beyond doubt.

3.5.2 Virtual Texturing for WebGL

Besides the gaming segment, virtual texturing will certainly be of
increasing importance for geographical data visualization. Espe-
cially online and mobile services for mapping, positioning and nav-
igation could greatly benefit from the accelerated display of aerial
images. That the implementation of virtual texturing is generally
possible on mobile platforms has been proven by Andersson and
Goransson [Andersson and Goransson 2012] with their WebGL im-
plementation. An interactive frame rate in this implementation,
however, could not always be achieved. The predominant issues
of WebGL and OpenGL ES 2.0 implementations tend to be the re-
strictive feature set and unsatisfactory browser support. As men-
tioned by the authors, the loading of DXT compressed images is
still not possible and with the lack of pixel buffer objects, a read-
back of the needbuffer or upload of a tile stalls the whole thread
until completion. However, it should only be a matter of time be-
fore these features are supported. Currently, GPGPU acceleration
is also impossible through WebGL. The API, WebCL, is already
under development though, so some of the tweaks presented might
be applicable in WebGL soon.

3.5.3 General Data Virtualization

The rise of virtual texturing linked to Rage also triggered the re-
search and development of acceleration methods. Thus, increas-
ing attention is devoted to data virtualization in general. As with
clipmaps, the concept of virtual texturing can be extended for ge-
ometry virtualization. One recent contribution by Sugden et al.
[Sugden and Iwanicki 2011] is the Mega Meshes system - in anal-
ogy to MegaTextures - which combines sculpturing tools and virtual
texturing in game development. In the content creation, enormous
geometry data is stored in a hierarchical structure like a quad-tree
with several subdivision levels that can be streamed. At runtime,
texture data according to the subdivision level such as normals and
ambient occlusion data is used in a virtual texturing system.

Virtualizing volume data, which is commonly represented by 3D
textures, has been introduced by Crassin et al. [Crassin et al. 2008]
under the term GigaVoxels. In 2011, Crassin proposed a complete
system for volume virtualization usable for e.g. biomedical appli-
cations and voxel-based game engines [Crassin 2011]. This is par-
ticularly interesting because voxels allow to overcome the (artifi-
cial) separation of geometry and surface texture. Thus, geometry
and texture streaming could be unified, although content creation
would get much more expensive for such an engine.

A contribution by Mayer et al. [Mayer et al. 2011] presents the
combination of virtual texturing and point cloud rendering for cul-
tural heritage preservation. The point cloud, however, is not vir-
tualized in this application but relies on another proven method of

out-of-core rendering. Still, this shows the direction in which real-
time rendering is heading.

3.5.4 Hardware-Implemented Virtual Texturing

As a result of this uprising, partial hardware support for the virtual-
ization pipeline seems to be usable in the near future. Video cards
using AMD’s Graphics Core Next architecture such as the Radeon
HD 7970 offer a redesigned fragment shader stage as well as sup-
port for partially resident textures [Bilodeau et al. 2012] through
the AMD_sparse_texture extension. With these it is possible to de-
fine a large-scale texture with only partial allocation. For the use in
virtual textures, they could make indirection texture and tile cache
obsolete, as all visible tiles can be stored right in the sparse texture.
If the virtual texture coordinates can be used to access the partially
resident texture through an internal texture coordinate translation,
the whole virtualization step can be done by the hardware. For tile
determination, shaders have been modified such that lookups to a
partially resident texture fetch the stored data - if present - and ad-
ditionally return a fetch state. If no data is stored at the lookup
location, a Fuail is returned that can be read back to the CPU, in-
dicating that the corresponding tile is not yet available and needs
to be streamed. A second state is the LOD warning which accord-
ing to a predefined level-of-detail limit for a texture indicates that a
higher-resolution representation of the current tile might be needed
soon, thus offering hardware supported tile prediction. Even tasks
like the filtering are re-simplified with this extension. Future imple-
mentations of virtual texturing using partially resident textures will
show if the extension holds up to its promises.

4 Conclusion and Outlook

Due to their properties, terrains can benefit greatly from the current
aerial and satellite image acquisition techniques. They extend over
the whole scene, so a huge amount of data is required to texture
them in a satisfactory way. This exceeds the capabilities of cur-
rent hardware in both texture size and total memory consumption.
Based on the observation that only a fraction of the texture data
and its mipmaps is needed to texture one frame at runtime, differ-
ent approaches have been suggested to detect and upload only this
information. Resorting to the virtual memory management of oper-
ating systems, the use of clipmaps for texture data virtualization has
been introduced, which evolved into the more flexible and efficient
virtual texturing. The virtual texturing pipeline as presented in this
report relies on a multi-threaded system that is divided into three
independent stages. A main benefit of this system compared to pre-
vious methods is the tile determination in screen space, providing
an exact solution for the tile visibility problem.

Several possibilities for quality improvement and acceleration at
different stages of the virtual texturing in both software and hard-
ware have been discussed, although their benefit for general ap-
plications is yet to be evaluated. Especially the hardware support
for partially resident textures in AMD video cards gives hope that
virtualization in general and virtual texturing in particular is made
applicable for the masses. Until now, implementing virtual textur-
ing is a complex task that only pays off for large-scale applications.
What is even harder is to get the single components of the pipeline
to work together in an efficient manner. The difficult start of virtual
texturing flagship Rage has shown that the interaction of these com-
ponents requires a lot of fine-tuning and leaves room for more ro-
bust solutions in the future. A point to consider game-dependently
is if unique texturing of small object is useful and pays off with
respect to the streaming overhead compared to static textures. The

insight that the GPGPU acceleration of texture decompression can
have a negative impact on the performance should lead to a more
careful work load distribution over all components in such dynamic
systems. One additional deficiency that has to be pointed out is
that WebGL and OpenGL ES do not seem to be fit for real-time
virtual texturing yet. With the lack of features already common in
OpenGL, virtual texturing on mobile devices is one or even two
steps behind. For the aimed-at application on these devices, how-
ever, an interactive frame rate might not be needed.

Considering the quality achievable with unique large-scale textures
that can be composed by artists as a whole, virtual texturing outper-
forms current terrain texturing methods. With its exact tile deter-
mination and the possibility to minimize artifacts through suitable
tile priority calculation, it is also superior to other current texture
streaming methods. This is why it is safe to assume that the virtual-
ization of all kinds of data will be continued and adopted in future
rendering systems.

References

ANDERSSON, S., AND GORANSSON, J. 2012. Virtual Texturing
with WebGL. Master’s thesis, Department of Computer Science
& Engineering, Chalmers University of Technology, Gothen-
burg.

ANDERSSON, J. 2007. Terrain Rendering in Frostbite Using Pro-
cedural Shader Splatting. In Proceedings of ACM SIGGRAPH
’07 course notes, course 28, Advanced Real-Time Rendering in
3D Graphics and Games, ACM, 38-58.

ASIRVATHAM, A., AND HOPPE, H. 2005. Terrain Rendering Us-
ing GPU-based Geometry Clipmaps. In GPU Gems 2, M. Pharr,
Ed. Addison Wesley, 27-45.

BARRETT, S., 2008. Sparse Virtual Textures.
http://silverspaceship.com/src/svt/, retrieved Apr 14, 2012.

BILODEAU, B., SELLERS, G., AND HILLESLAND, K. 2012. Par-
tially Resident Textures on Next-Generation GPUs. Game De-
velopers Conference.

BURNES, A., 2011. How To Unlock Rage’s High Resolution
Textures With A Few Simple Tweaks.
http://www.geforce.com/whats-new/articles/how-to-unlock-
rages-high-resolution-textures-with-a-few-simple-tweaks/,
retrieved Apr 15, 2012.

CRASSIN, C., NEYRET, F., AND LEFEBVRE, S. 2008. Interactive
GigaVoxels. Tech. Rep. RR-6567, INRIA.

CRASSIN, C. 2011. GigaVoxels: A Voxel-Based Render-
ing Pipeline For Efficient Exploration Of Large And Detailed
Scenes. PhD thesis, University of Grenoble.

CRAUSE, J., FLOWER, A., AND MARAIS, P. 2011. A System for
Real-Time Deformable Terrain. In Proceedings of the SAICSIT
’11, ACM, 77-86.

Eric GAMES, 2012. Terrain Advanced Textures.
http://udn.epicgames.com/Three/TerrainAdvancedTextures.html,
retrieved May 13, 2012.

HOLLEMEERSCH, C.-F., PIETERS, B., LAMBERT, P., AND VAN
DE WALLE, R. 2010. Accelerating Virtual Texturing Using
CUDA. In GPU Pro - Advanced Rendering Techniques, W. En-
gel, Ed. AK Peters, 623-642.

KALRA, A., AND VAN WAVEREN, J. 2008. Threading Game
Engines: QUAKE 4 & Enemy Territory QUAKE Wars. Game
Developers Conference.

LEFEBVRE, S., DARBON, J., AND NEYRET, F. 2004. Unified Tex-
ture Management for Arbitrary Meshes. Tech. Rep. RR-5210,
INRIA.

LosAsso, F., AND HOPPE, H. 2004. Geometry Clipmaps: Terrain
Rendering Using Nested Regular Grids. In Proceedings of ACM
SIGGRAPH '04, ACM, 769-776.

MAYER, I., SCHEIBLAUER, C., AND MAYER, A.J. 2011. Virtual
Texturing in the Documentation of Cultural Heritage. Geoinfor-
matics FCE CTU.

MAYER, A.J. 2010. Virtual Texturing. Master’s thesis, Institute of
Computer Graphics and Algorithms, Vienna University of Tech-
nology.

MITTRING, M. 2008. Advanced Virtual Texture Topics. In ACM
SIGGRAPH 08 classes, ACM, 23-51.

MULTIMEDIA LAB, 2011. Demos - Multimedia Lab. Ghent Uni-
versity. http://multimedialab.elis.ugent.be/demonstrations,
retrieved Apr 1, 2012.

NEU, A. 2010. Virtual Texturing. CoRR abs/1005.3163.

NVIDIA CORPORATION, 2007. Clipmaps whitepaper.
http://developer.download.nvidia.com/SDK/10/direct3d/Source/
Clipmaps/doc/Clipmaps.pdf, retrieved Apr 10, 2012.

SUGDEN, B., AND IWANICKI, M. 2011. Mega Meshes - Mod-
elling, rendering and lighting a world made of 100 billion poly-
gons. Game Developers Conference.

TANNER, C. C., MIGDAL, C. J., AND JONES, M. T. 1998. The
Clipmap: A Virtual Mipmap. In Proceedings of ACM SIG-
GRAPH ’98, ACM, 151-158.

VAN WAVEREN, J., AND HART, E. 2010. Using Virtual Textur-
ing to Handle Massive Texture Data. NVIDIA GPU Technology
Conference.

VAN WAVEREN, J., 2008. Geospatial Texture Streaming From
Slow Storage Devices.
http://software.intel.com/en-us/articles/geospatial-texture-
streaming-from-slow-storage-devices/, retrieved Apr 15, 2012.

VAN WAVEREN, J. 2009. id tech 5 Challenges - From Texture
Virtualization to Massive Parallelization. ACM SIGGRAPH *09
— Beyond Programmable Shading Course.

WIDMARK, M. 2012. Terrain in Battlefield 3: A modern, complete
and scalable system. Game Developers Conference.

