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Abstract: The application potential of Visual Analytics (VA), with its supporting interactive 2D and
3D visualization techniques, in the environmental domain is unparalleled. Such advanced systems
may enable an in-depth interactive exploration of multifaceted geospatial and temporal changes in
very large and complex datasets. This is facilitated by a unique synergy of modules for simulation,
analysis, and visualization, offering instantaneous visual feedback of transformative changes in the
underlying data. However, even if the resulting knowledge holds great potential for supporting
decision-making in the environmental domain, the consideration of such techniques still have to find
their way to daily practice. To advance these developments, we demonstrate four case studies that
portray different opportunities in data visualization and VA in the context of climate research and
natural disaster management. Firstly, we focus on 2D data visualization and explorative analysis for
climate change detection and urban microclimate development through a comprehensive time series
analysis. Secondly, we focus on the combination of 2D and 3D representations and investigations for
flood and storm water management through comprehensive flood and heavy rain simulations. These
examples are by no means exhaustive, but serve to demonstrate how a VA framework may apply to
practical research.

Keywords: visual analytics; interactive data visualization; environmental research; flood simulation;
natural disaster management; climate research

1. Introduction

Current trends in visualization research aim to transcend the limits of conventional
methods for representing data (often static and of a narrow scope) in order to amplify the
advanced cognition about the underlying data [1,2]. The optimal way to achieve such
advanced enhancements is by utilizing the potential of interactivity to support complex
data analytics. Such interactive systems enriched with integrated visual interfaces—a
synergy of modules for simulation, analysis, and visualization—are designed with a very
clear goal in mind—to surpass the limited human analytical capacity for synthesizing
overwhelming volumes of disparate data into profound insights. The very process of this
interactive visual data exploration is known as Visual Analytics (VA) [3]. VA is a thriving
feature-rich field allowing visualization-based dialogue with the data at hand. Essentially,
VA brings together practices such as data mining and statistical techniques to visualize and
synthesize information in an intuitive manner, while further employing the human eye’s
visual perception towards shaping these into fundamental knowledge.

The process of linking visualization with interactivity features is the key aspect in
the design of VA systems. The focus of such coupling was commonly placed on 2D rep-
resentations involving abstract data. These techniques are quite fitting when considering
visualization of continuous, numeric attributes in order to detect potential relationships,
patterns, and correlations amongst these attributes. Essentially, here we talk about explor-
ing multiple time-varying quantities represented in time series datasets. However, 2D
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representations do not perform adequately in every context. For instance, when consid-
ering geospatial data, such visualizations often suffer from overplotting and occlusion
leading to information loss [4]. This is namely due to a large number of data points being
superimposed over each other, making it difficult for a human analyst to see individual
data points and make inferences of potential relationships. In turn, this may impede the
performance of three distinct visual perception tasks, as described by Elmqvist and Tsigas [5],
pertaining to (a) discovery—localization of a geometric representation, (b) access—retrieval
of the shape, color, or any other property, and (c) spatial relation—interrelation of geometric
representations. Furthermore, the relative positioning in a 2D space is equally not suitable
for performing an absolute positioning task in a 3D space as inherent physical constraints
of a 2D space make it impossible to account for the full spectrum of additional multivariate
geospatial attributes [6]. Hence, alternative visualizations using 3D depictions enriched
with comprehensive navigation features may be better suited when exploring the inter-
nal structure of such data. In principle, 3D visualizations capture the full spectrum of
dimensionality of the underlying data and supporting information, while interaction and
navigation techniques emulate a sense of exploring a real-world environment in a familiar
way.

Nowadays, however, there is an increasing need for combining both 2D and 3D
visualizations and their inherent navigation and exploration techniques. Indeed, combining
3D views with traditional 2D data visualizations through multiple interlinked modules
offers a multitude of advantages. Most prominently, as we do not rely on one single
plane of representation for data exploration, the data exploration becomes more perceptive
and holistic. Nevertheless, there is also a certain level of sophistication necessary when
conceptualizing such integrated visual systems. These may be summarized into five distinct
design goals, which strongly depend on the underlying data and domain problem [7]:

1. High-performance and quality of 3D geometric rendering (i.e., achieving high-detail context
geometry).

2. Multivariate analysis capabilities (i.e., integration of various types of visualization
diagrams to support multifaceted analysis).

3. Adequate computation and quantification of spatial phenomena (e.g., realistic shadow
mapping and reflectance properties).

4. Common spatial context for geometric representations (e.g., considering the same coordi-
nate system).

5. Tight integration between geometry and its attribute aspects (this essentially concerns
integration of design goals 1 and 2).

A number of general-purpose tools exist that typically achieve one or a few of these
design goals, but are lacking capabilities concerning some of the other aspects (see for
example, [8–22]). The review of these existing tools and approaches, along their available
visualization solutions, further guided our resolution to reflect on the usability and func-
tionality of diverse visualization techniques in supporting a variety of data exploration
tasks and concepts. We feel that it is equally crucial to evaluate the application potential
of diverse visualization techniques given the different data types (e.g., temporal, spatial,
spatiotemporal). As mentioned above, a suitable conceptualization of an effective VA
system is closely related to the type of domain problem and exploration needs. Thus,
having an analysis tool that may appear as a limited solution in one circumstance might
not be perceived as disadvantageous in some other circumstance. In this context, we aim to
illustrate a number of specific instances where such statements hold true.

Starting from a discussion of an interactive tool that supports 2D visual representations
where we consider an in-depth analysis of multivariate time series data, we proceed to
a discussion of an interactive simulation software where 2D and 3D visualizations are
combined to provide an informed decision-support regarding a number of complex geospa-
tial and temporal phenomena. These case studies portray different opportunities in data
visualization and VA in the context of climate research and natural disaster management.
These examples are by no means exhaustive, and some originate from our original previous
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case studies, whereby we generated novel insights and supporting figures for this partic-
ular contribution. However, they serve to demonstrate how a VA framework enriched
by 2D and 3D visualizations may apply to practical research. Although the application
of these approaches and the resulting knowledge holds great potential for supporting
decision-making in the environmental domain, the consideration of such techniques have
still to find their way to daily practice. Hence, through our demonstration, we aim to
advance these developments.

2. Related Work and Best Visualization Practices

A number of commercial and research-based tools for multivariate data analysis
supported by either 2D or 3D visualizations, or a combination of both, have emerged over
the past decades. Some tools fall under a more general-purpose category, whereby the
other are geared towards a certain domain or class of problems. Aligned with our research
agenda, we will reflect on those tools and methods supporting multivariate time series and
geospatial data visualization and analysis.

When dealing with time series data, the most prominent visualization techniques are
mainly geared towards 2D representations [11–13]. In this regard, the most commonly used
visualization for temporal data is the 2D line chart that relies on position encodings for both
time and value to display time-based evolution of one or several numeric parameters [11].
Another valuable representation is a heatmap view that helps us explore two levels of time
dimension in a 2D array (e.g., annual–monthly, monthly–daily) while offering a swift visual
identification of the variance across multiple parameters and dimensions [12]. Additional
noteworthy representation is a horizon graph—a compact visualization of time varying
quantitative data with increased density achieved by dividing and layering filled line
charts [13].

The current landscape of VA tools supporting such visualizations mostly lean towards
the commercial realm (e.g., Tableau [14], QlikView [15], MS Power BI [16]). These tools offer
a suitable richness of interactive built-in 2D visualization features to support informed time
series data exploration and analysis at different levels of granularity. However, as they are
mainly designed to drive business intelligence type of tasks, their suitability in supporting
scientific inquiry may be debatable [17]. Hence, several research efforts were initiated
focusing on the development of VA tools for time series analysis further complemented
by model building or forecasting functionalities [18,19]. One notable effort relates to the
work of Bögl et al. [18]. Here, a VA prototype was built consisting of coordinated and
multiple views displaying time series plot (i.e., line chart), the toolbox for model selection
and prediction, the autocorrelation and partial autocorrelation plots for selecting model
orders, diagnostic plots for the residual analysis (i.e., vertical line chart), and a table view
showing the model selection history. Although the main focus of this solution was on
supporting users in finding the adequate model and parametrization for concerned time
series, the usability of chosen visualization methods proved to be more than suitable for
the given task and data type.

When dealing with geospatial data, the visualization techniques follow either a 2D
or a 3D representation approach. Some solutions, as the commercial VA tools mentioned
above, only offer 2D cartographic visualizations that are often confronted with unfavorable
visibility issues (i.e., occlusion) of displayed parameters. For dealing with the 3D geometric
data and geometric questions, Geographic Information Systems (GISs) are often used
(e.g., ArcGIS [20], GeoMedia [21]). Their application is widespread in disciplines such
as civil engineering, urban planning, or geosciences. However, these applications form
a compromise between detailed 3D geometric rendering and 2D multivariate analysis in
such way that they typically either lack complex analytical capabilities in favor of the
3D geometric rendering, or are restricted to 2D cartographic views but support certain
analytical modalities.

In an effort to address such limitations, Chang et al. [22] presented an interactive
solution that combines attribute views with geographical views in an interlinked two-view
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setting. The solution offered a 3D model view and a 2D multidimensional data view that
adds an additional perspective essential for understanding the urban model. Such cohesive
integrations demonstrated a notable improvement in exploring and inferring these types of
data, both spatially and cognitively.

3. Visualization and Exploration Approaches for Time Series Analysis
3.1. Visual Analytics System with 2D Visualizations

The VA solution used for interactive visual exploration of multi- and high-dimensional
time series data is an analytical ensemble solution developed at our institution, specifically
designed for such a purpose [23]. The solution offers intelligently engineered computational
cockpits with diverse features for visualization, data analytics, workflow management,
and external integration (e.g., with Python, R, Matlab). These computational cockpits are
composed of a number of individual interlinked 2D views (e.g., histogram, time distribution
plot, parallel coordinates plot, heatmap, etc.) with instantaneous response to any user
activity (e.g., point click, sequence selection, labelling) across all concerned views (Figure 1).
This essentially means that, once a selection of a data point or a data subset of interest has
been made in one visual unit, the analogous data point/subset is highlighted in another
unit within the same computational cockpit. To achieve such concurrent task execution and
responsiveness to user inputs, the VA solution is based on a multi-threaded architecture.
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Figure 1. Illustration of real-time responsiveness to feature selection across 2D visual units within
one computational cockpit: (A) by selecting a data sample from a horizon graph (top), (B) the
corresponding data pair is highlighted in time series distribution (bottom left) and (C) histogram
(bottom right) view across all active time series, allowing thus an instantaneous comparative analysis.

3.2. Visual Analytics Opportunities in the Context of Climate Research

By deploying the VA system described above in the context of climate research, more
specifically for high-resolution meteorological time series analysis, we can identify diverse
features of time series data. For instance, we can detect the general temporal behaviors,
unusual distributions and deviations, periodical transformative changes and discrepancies,
with little effort. These functionalities hold great potential for specific explorative case
studies such as climate change detection and the investigation of urban microclimatic
development encoded in meteorological time series, which are illustrated in the follow-
ing sections through a top-down descriptive portrayal (i.e., from higher to lower-level
phenomena).



Information 2022, 13, 7 5 of 21

3.2.1. Climate Change Detection

In order to illustrate how a climate change signal can be detected from a high-
resolution (denoted by a high temporal resolution) meteorological time series using a
VA framework, we describe here a study conducted between three Central European cities
(Vienna, Munich, and Zurich). The input data, originating from several international open
data initiatives, was provided on a long-term (45 years, 1975–2020) and a short-term basis
(5 years, 2016–2020), in a monthly and an hourly format, respectively. The long-term data
pertained to monthly maxima, minima, and average values of concerned study parameters
(i.e., air temperature, solar radiation, and precipitation). The short-term data pertained to a
natural progression of air temperature recorded on an hourly base [24].

Prior to the analysis, we performed data structure preparation and data quality check.
We followed logical naming and formatting conventions as imposed by the tool itself, in
which a date–time format should be clearly specified along a clear distinction of the study
parameters (i.e., air temperature, solar radiation, and precipitation). The tool further offers
a specifically tailored toolkit for conducting a quality check (Figure 2). Here, information
on conditions such as the missing values, duplicates, outliers, threshold breach, to name a
few, may be assessed with little effort. In this context, we noted some instances of missing
values, which, in order to preserve data integrity, were left as blank fields. Altogether,
the amount of missing values was small (1.58% of the total data pool), thus, we were not
concerned about such aspects affecting the analysis.
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Figure 2. Illustration of a toolkit for data quality check available at the used VA tool: (A) the detected
missing values in the whole data pool with exact positioning of concerned missing instances marked
with red lines, (B) visual detection of threshold breaches for those instances when a value exceeds
30 ◦C or goes below 0 ◦C.

Considering the diverse resolutions of input data, by focusing on long-term time span,
we can properly investigate historic local climate change at study cities, given the fact that
data records of at least 30 years are considered appropriate to tackle such developments.
On the other hand, by focusing on short-term time span, we can observe the respective
present-day warming tendencies and trends in selected cities. Such observations are led by
a current research consensus on Earth’s climate undergoing a rapid warming [25]. In this
context, we were able to gain insights on different levels of granularity. More specifically,
long-term monthly data (i.e., air temperature, solar radiation, precipitation) provided us
with insights on general trends and distributions, whereby fine-grained hourly data (i.e.,
air temperature) offered insights on the exact positioning and duration of certain events in
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time, their periodic behaviors, and recognition of distinct structural changes. However, by
utilizing the potentials of a VA system, we were equally able to perform a deeper feature
extraction through intra-comparative studies within a single time series (e.g., originating
from one single city).

To exemplify, in order to go beyond a simple annual progression of a considered
meteorological parameter (i.e., air temperature) for a long-term analysis, we compared
a reference timespan (i.e., last 10 years, 2010–2020) to the rest of the dataset (1975–2010).
Firstly, by comparing the temperature maxima, we were able to detect a prominent warming
signal towards a recent period across all three concerned cities, denoted by an obvious
higher representation of temperature peaks (colored in red in horizon graphs in Figure 3)
when compared to a reference 1975–2010 timespan. The naming convention in Figure 3
corresponds to the cities under study: T_MAX_M stands for Munich, T_MAX_V stands
for Vienna, and T_MAX_Z stands for Zurich. Secondly, we observed a more frequent and
more probable occurrence of temperatures exceeding 35 ◦C in the past ten years, as seen in
the data sequence selection marked in pink (denoting the last ten years) with highlighted
instances of such events (individual points) compared to a blue sequence (rest of the dataset)
in Figure 3 (as seen in the bottom graphs). We further noted an obvious shifting of the
frequency area in histogram view towards generally higher temperature values, as seen in
Figure 3 (bottom, right).
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Figure 3. Warming progression denoted for the air temperature maxima with higher frequency of
temperatures exceeding 35 ◦C in the past 10 years in comparison to the remaining 35 years: (A) the
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Similar observations are made for the air temperature minima, where the horizon
graph revealed an equal warming trend suggesting a decline in lower temperatures in the
past ten years for all three cities (Figure 4). Additionally, a notable decline in frequency
of air temperatures below −5 ◦C is seen in time series and histogram graphs in Figure 4,
suggesting a rare occurrence of such events in recent periods (as seen in highlighted data
points marked in pink data subset). Such observations suggest generally warmer winters
in the past ten years. This is further supported by a notable shift of the frequency area in
histogram view towards higher values for air temperature minima, as seen in Figure 4.
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Figure 4. Warming progression denoted for air temperature minima with higher frequency of
temperatures not exceeding −5 ◦C in the past 10 years in comparison to the remaining 35 years:
(A) the observed higher representation of temperature peaks marked in red; (B) the highlighted
individual data points denoting instances of air temperature below −5 ◦C in 2010–2020 period;
(C) shifting of the frequency area towards generally higher values for temperature minima.

The visual analysis of the meteorological parameters pertaining to solar radiation
and precipitation provided us with additional interesting insights (Figure 5). Namely, we
can observe a generally higher duration of solar hours in recent periods, whereby the
precipitation data revealed a slow but steady upward trend (as depicted in the heatmap
view in Figure 5). This is further supported by the existing prominent peaks observed in
the histogram view, representing the 2010–2020 data subset. Together, such observations
may indicate a dry period with longer annual sunshine duration, along the more likely
episodes of sudden precipitation events, such as the heavy rain events.

Looking at the short-term analysis, we observed the duration and positioning of both
air temperature minima and maxima over the entire period of 2016–2020 (Figure 6). We
performed a seasonal pattern search for cold (i.e., below −5 ◦C) and warm events (starting
from 25 ◦C and exceeding 30 ◦C), as seen in Figure 6, left and right, respectively. We can see
a clear decline in cold events, along with an apparent shorter seasonal duration. Once we
isolated the conditions from the year 2020 and compared them to the past four years, it was
rather clear that the temperature minima have a tendency towards generally higher values,
as depicted with a blue line in Figure 6. Furthermore, we can see that the temperature
minima in 2020 are beginning to rise at an earlier time, already after the 12th day of a cold
event (Figure 6, top left). On the contrary, warm events were equally present throughout
the entire period of five years; however, with a more prominent clustering in the year 2020.
This may indicate a longer duration of heat waves in the current period. This is further
supported by the respective duration of warm events in 2020 (depicted by a blue line in
Figure 6, top right), where we can see that higher temperatures are still present after the
16th day of a warm event, whereby a decline may be observed for the previous years.
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Figure 6. Composite view of comparative seasonal pattern analysis for air temperature minima and
maxima carried out for the short-term dataset: winter (left); summer (right).

3.2.2. Urban Microclimate Development

In order to illustrate the degree of urban microclimate development that can be
discerned from the meteorological time series, we describe here a study conducted for the
city of Vienna, Austria. The acquired open source data represent a yearlong hourly-based
air temperature information depicting the year 2020, simultaneously measured at an urban
(Hohe Warte) and a rural (Vienna airport) station [26]. Prior to the study the same data
structure and data quality check was performed, as described in climate change detection
scenario. The aim of this comparative study was to provide an evidence of the magnitude
and characteristics of the urban climate change on a local level, specifically focusing on
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urban overheating. Such investigations are driven by the fact that urban areas have a
tendency to develop higher temperatures than the corresponding rural areas, forced by a
generally higher thermal mass with greater heat absorption, storage, and release capacity,
leading to the development of the urban heat island phenomenon [27,28].

However, it should be noted that the following study is limited in its scope due to
the consideration of only one urban locality. The urban microclimate development is a
phenomenon of a strong spatial and temporal character, with notable variations across a
city. However, the inherent limitation of approaches focusing on empirical data is that only
so many collection points in a city may be offered. This especially holds true for a study of
this nature, which strongly depends on the availability of weather stations in a particular
city. As we fully relied on the open data made available by the local meteorological institute,
the possibility to include more stations at this stage was not feasible. We hope that in a near
future a collaboration with the concerned institute may be established so that more data
would be at our disposal with a better spatial coverage. However, the benefit of relying
on open data is not only to allow for replicability of the research and related findings,
supporting thus the validation activities, but also for testing the proof of concept, which in
this regard refers to the detection of urban microclimate development using the suggested
visualization techniques and methods.

We started our investigation by observing the full-length annual temperature dis-
tribution where, on such a high level, little discrepancy in hourly values across paired
parameters was observed. However, with the aid of a VA system, we could perform a
more comprehensive analysis and detect hidden and inexplicit events. To exemplify, we
defined two distinct thresholds representative of cold (below 0 ◦C) and warm (above 28 ◦C)
conditions (Figure 7). Cold conditions were observed from the rural station (T_SCHW)
serving as a base line, whereby warm conditions were observed from the urban station
(T_HW). From the histogram view in Figure 7, we can clearly perceive a prominent dis-
crepancy between such events. In case of cold events, for the temperature range below
0 ◦C recoded in the rural dataset, a clear shift towards a higher range (up to 5 ◦C) was
depicted in the urban dataset (histogram view in Figure 7). In contrast, for warm events,
we observed a tendency towards higher temperatures in the urban dataset, whereby the
range in rural dataset was wider (starting from 27 ◦C). Horizon graphs in Figure 6 further
support these observations, as a larger area of lower temperatures (marked in blue) was
noted in rural data for the corresponding paired instances in urban data. Similarly, a larger
area of higher temperatures (marked in red) was noted in urban data for the corresponding
paired instances in rural data. We further noted some cases with a reversed trend, where
for higher urban temperature corresponding to lower rural temperatures were recorded.
This is especially visible in horizon graphs in Figure 7, for the month of February, as well as
from mid-November until the beginning of December.

For a more in-depth analysis, we isolated temporal fragments of both time series,
representative of meteorological seasons, specifically winter and summer (Figure 8). We
further focused on diurnal segmentation within each of the concerned season, whereby all
segmented curves of selected time series are superimposed over each other (Figure 8, top).
This allowed us to observe discrepancies in peak values and daily amplitudes, along the
warming and cooling trends encoded in both datasets. For instance, we could perceive a
wider temperature range during winter for rural area going as low as −8 ◦C, whereby urban
winter temperature rarely exceeded −5 ◦C. Regarding the diurnal distribution, a flatter
curve can be observed for the urban area, suggesting less temperature variation throughout
the day and a probable development of the urban heat island effect. Results pertaining
to summer offered more insights on urban heating tendencies with the daily temperature
maximum being up to 2.5 ◦C higher in urban than rural areas. Furthermore, the urban
cooling process was equally delayed, as the temperature in rural area generally started to
drop around 4 PM, whereby 6 PM was a cooling point noted for the urban area (Figure 8,
top up). However, the overall cooling rate was slower in urban than in rural areas (depicted
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by a flatter blue line in urban dataset). Such observations indicate a possible development
of tropical nights in urban areas.

Figure 7. Comparative analysis of air temperature datasets originating from urban and rural environ-
ments showing a clear misalignment of low and high temperature ranges, along the warming signal
in urban data.

Figure 8. Composite view of comparative seasonal analysis of urban and rural air temperature
depicting discrepancies in high and low values, along the different cooling and warming rates: winter
(left); summer (right).

4. Visualization and Exploration Approaches for Geospatial Analysis
4.1. Visual Analytics System with Combined 2D and 3D Visualizations

The system used for interactive visual investigation of geospatial data and correspond-
ing real-world processes is an integrated ensemble-based flood simulation and visualization
software developed at our institution [29]. More precisely, this is a scenario-based decision-
support system, which combines state-of-the-art hydrodynamic modelling (i.e., simulation
of water propagation and interaction with surrounding structures), 2D analysis, and 3D
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visualization methods to support exploration, planning, and decision-making in the context
of flood management (Figure 9).

Figure 9. Integrated ensemble-based flood simulation and visualization system with combined 2D
(world lines, diverse analytical diagrams) and 3D visualization units.

Diverse viewing units are used for this purpose. To support the time-based navigation
across generated ensemble simulations, a 2D temporal view with world lines is offered,
while a spatial 3D visualization is used to navigate through a design space via a 3D
rendering of a scenario. World lines denote a novel interactive visualization system of
multiple linked branching 2D views that enable interactive comparative analysis across
alternative simulation runs. These simulations are commonly run with a different set of
simulation parameters pertaining to the, for example, intensity and duration of rainfall,
the magnitude of river floods, or the failure of existing protection measures [30]. These
parameters can be interactively refined and modified on the fly, allowing a prompt visual
feedback. For instance, users may directly interact with 3D visualizations and draw paths
in a 3D view to design, e.g., protective measures such as mobile walls or sandbags. These
actions are automatically translated into new simulation boundary conditions.

4.2. Visual Analytics Opportunities in the Context of Flood Management

By using the software framework described above, we can carry out comprehensive
investigation and identification of flood-prone areas towards an informed flood risk as-
sessment. More specifically, we can derive the following: (1) detailed flooding area maps
with water level information; (2) flow maps (i.e., different water flow directions, water
velocity, transportation paths of potentially dangerous debris); (3) consider and evaluate
the performance of protective measures (i.e., physical barriers to flooding); (4) carry out an
object-centered impact and vulnerability assessment, e.g., the flood-related vulnerability
and impacts focusing on a particular object (i.e., a building). In the context of the present
contribution, we will discuss flood damage under a heavy rainfall scenario and flooding
probabilities along the façade computed for a building of interest.
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4.2.1. Flooding under a Heavy Rainfall Scenario

Our analysis relied on a 3D visualization of dynamic water simulation with realistic
water surface representation, flowing over a high-resolution digital terrain model embed-
ded into a geospatial context, further interacting with existing high-resolution building
meshes. For the terrain model, we considered elevation data originating from the Austrian
open data initiative representing an Austrian city [31], where ground elevations are relative
to the sea level. Likewise, high-resolution building meshes originated from the same open
data initiative.

The software takes the height field of the terrain model (the so-called bathymetry)
defined on a regular grid with cell size between 0.5 and 5 m [32]. A common practice is to
have the bathymetry already prepared for hydrodynamic modelling, whereby the riverbeds
are properly cut out by experts beforehand and bridges have been removed. Additionally,
the simulation takes as an input a scalar field of surface roughness values (i.e., Manning’s
roughness coefficients) that are derived from vector data pertaining to land use, which is
available from open data services. Building footprint polygons are taken from the official
cadastral map of the municipality and later rasterized following the same grid resolution,
to create solid wall cells for the simulation that are defined as not flooded.

For the dynamic water simulation, as a result of heavy rainfall leading to surface
runoff, we considered specific input boundary conditions such as the inflow and outflow
conditions with hydrographs (a function of water flow rate over time), along the precipita-
tion rates and duration. In our decision support system, the water flow is simulated with a
shallow water simulator using a finite-volume method [33]. The output of the simulation is
represented by cell-averaged water levels and velocities defined on a rectangular adaptive
grid. In the background, the system processes the hydrological and geospatial input data
to automatically compute inflow, outflow, and interior flow conditions required by the 2D
flood simulator.

Figure 10 illustrates the resulting flooding scenario using a 3D rendering view, depict-
ing the surface water runoff for the concerned spatial domain under a considered extreme
weather event. We can immediately observe which areas are particularly affected given the
terrain configuration and natural water flow. Additionally, we can inspect the site-specific
water depth information by sampling target zones directly from the 3D rendering view. The
visualization of the resulting information is supported by 2D analytical views. Besides such
comprehensive urban flood forecasting and visualization, we can carry out the estimation
of corresponding building structural damage. In this case, buildings are color coded with
respect to their hazard (red = high, yellow = medium), as depicted in Figure 10. All of
these aspects are also time-sensitive, which means that we can easily observe the natural
progression of concerned events through time (Figure 10, left and right). Aggregated
values such as maximum water levels or worst-case damages over the considered scenario
duration can optionally be displayed as well.

It is rather clear that in order to fully understand the degree of the severity of such
flooding scenarios in the generated virtual world, the 3D visualization and supporting
navigation features are paramount. By deploying such features, we can inspect highly
impacted zones in more detail and observe them from different angles. In turn, this may
uncover hidden and occluded time-sensitive and location-sensitive events that would
otherwise remain undetected. Figure 11 illustrates one such explorative study done for
the same urban domain where we detected a potential for rainwater accumulation that
could eventually overflow towards the surrounding building structures. These kinds of
explorations generally lead to a conceptualization and informed placement of preventive
measures such as, e.g., water retention basins.



Information 2022, 13, 7 13 of 21

Figure 10. Time-sensitive urban flooding simulation under a heavy rainfall scenario with hazard
representation for potential building structural damage (red = high, yellow = medium): earlier time
stamp (left); later time stamp (right).

Figure 11. Time-sensitive urban flooding simulation under a heavy rainfall scenario observed from
additional angle: earlier time stamp (left); later time stamp (right). We can further observe how the
degree of hazard for potential building structural damage changed for individual building objects.

4.2.2. Building-Oriented Impact and Vulnerability to Flooding Events

In addition to investigation of flood-prone areas within a certain spatial context, the
understanding of the impact and vulnerability of existing infrastructure to flood-related
hazards is equally imperative. We consider here the building-centered impact of flood-
related hazards on the building of interest, estimated by the degree of exposure of the
building façade to flood water. Considered flood-related events include floodwall breaches
(dam breaks), sewer overflows, heavy rains, and floodwall overtopping (water spilling
over the wall). Figures 12 and 13 illustrate sample floodwall overtopping scenarios for a
sample urban domain in the city of Cologne, Germany. The depicted flood events are a
result of water discharge from the overtopping river, which is illustrated here for different
water level rise (i.e., 12 and 12.3 m). Figure 14 illustrates the sewer overflow scenario for a
given parameter selection (i.e., duration of the heavy precipitation event). On the right side
of each software interface, we can see the afore-mentioned world lines depicting different
simulation runs for each flooding event type run under different boundary conditions (e.g.,
different breach positions, water levels, precipitation rates, event durations, etc.). The green
circle in Figures 12 and 13 marks a building of interest.
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Figure 12. Selection of different floodwall overtopping scenario from the parameter-based and time-
based world lines (green circle marks the building of interest). In this illustration, a water level of
12 m was selected and the resulting flooding scenario visualized for selected overtopping duration.

Figure 13. Selection of different floodwall overtopping scenario from the parameter-based and time-
based world lines (green circle marks the building of interest). In this illustration, a water level of
12.3 m was selected and the resulting flooding scenario visualized for selected overtopping duration.
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Figure 14. Selection of a sewer overflow scenario from the parameter-based and time-based world
lines (green circle marks the building of interest). In this illustration, a sample scenario was visualized
for a specific positioning of the sewage discharge point and the duration, given the 15 variations of
overflow localities and 5 possible durations.

We start by investigating the building-level impact due to a flooding event [34]. For
this purpose, we carry out the mapping of the water levels aggregated over all relevant
scenarios at each cell over time onto the building façade areas in a 3D city model. This
aggregation provides us with a new scalar field of maximum water depths. We then sample
the respective water depths along the footprint polygon of the building of interest in fine
steps (e.g., 10 cm steps) to calculate the maximum water depth along the building facade.
This results in a line depicted in 3D view (purple line along the façade in Figure 15, right),
and the area below that line is assumed to be exposed to water. With all scenarios being
mapped onto the building façade areas, we can further derive respective maximum water
depth lines for each individual scenario. Additionally, we can calculate a probability for
each of the points on the façade being flooded in any of the considered scenarios. These
probabilities are then colored in the 3D visualization from red (absolutely certain flooding
in every scenario) to green (very low chance of flooding).

In Figure 15, we illustrate the probability of a particular part of the façade to be
exposed to the water under the floodwall overtopping scenarios. By interactively selecting
the water level depicted on the façade (purple line along the façade in Figure 15, right), we
can visualize the corresponding flooding scenario under which such damage and water
level is the most probable to occur. The respective water depths map is shown on the
terrain using shades of blue.

To enhance the perception of water levels along the entire building object, a rotation
along the contour edges of the object is enabled (Figure 16). This allows for an informed
flood risk assessment alongside the entire object, so that the appropriate mitigation mea-
sures may be planned. Furthermore, a (fictitious) door and the surrounding cars are always
shown on the facing façade to further add to the sense of scale. Beside the exterior water
levels, it is possible to also visualize the water levels inside a building, a computation that
is driven by the water inflow through user-defined leaky windows.
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Figure 15. Probability of a particular part of the building façade to be exposed to water: selection of
the desired impact visualization and scenario (left); selection of a sample scenario from the entire
scenario ensemble directly from the building façade (right). The colors denote a range from 0%
probability (green) to a 100% probability (red).

Figure 16. Rotation along the contour edges of the building object of interest with corresponding water
levels mapped on each façade for an informed flood risk assessment and planning of appropriate
mitigation measures: side view of the building (left); back view of the building (right) The colors
denote a range from 0% probability (green) to a 100% probability (red).

We continue by visualizing the building-centered vulnerability to floodwall over-
topping assisted by an interactive 2D tabular cell-based chart (Figures 17 and 18). The
vulnerability metrics are computed in relation to the previously derived lines depicting
the maximum water depths along the building footprint. The maximum height of each
line is taken as the highest exposure of any point of the building to water, which is then
used to color the building-centered vulnerability. A plausible heuristic is used to translate
the water range from 0–2 m to a respective damage level of 0–100%. We consider the 2 m
height as the absolute maximum due to the fact that at this height, water pressure along the
building would be so high that catastrophic damage to the building would be inevitable.
This means that water would be forced through every window and door, with substantial
flooding of the cellar and entire ground floor.

The present scenario illustrating building-centered vulnerability concerns the analysis
of the city of Cologne’s (Germany) preparedness for and response to flood-related inci-
dents [32]. More specifically, the potential of suggested protection walls along the river
Rhine to withstand the raising water levels and water pressure on the walls is evaluated.
The investigation concerned multiple scenarios where potential breaches are inspected and
resulting overtopping analyzed (Figures 17 and 18, right panel of each interface compos-
ite view). Additionally, we could select a particular building of interest to evaluate the
building-centered vulnerability.
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Figure 17. Interactive 2D cell-based chart for the vulnerability to floodwall overtopping showing
the selection of different vulnerability-sensitive scenarios: the gray color depicts conditions that
are considered safe for the building of interest (left); the red color depicts vulnerability up to 100%
(right).

Figure 18. Interactive 2D cell-based chart for the vulnerability to floodwall overtopping showing
gauge with water levels on the far left of each interface view, along the hydrograph (black line) and
time navigation bar (bottom).

In this regard, the vulnerability is shown with respect to the damage inflicted on the
building of interest (marked in a 3D city model view in Figures 17 and 18). On the left side
of the 2D tabular chart, a vertical gauge is given that indicates different water levels and the
corresponding uncertain vulnerability values. Each cell in the 2D tabular chart depicts the
color-coded vulnerability of the building of interest in the corresponding scenario (water
level and duration). Here, the red color depicts vulnerability up to 100%, while the gray
color depicts conditions that are considered safe (Figure 17). These vulnerability-sensitive
scenarios can be directly selected from the 2D tabular chart (marked with a purple square
in Figure 17) and further investigated.

Once a desired vulnerability-sensitive scenario is selected, the view plots a hydro-
graph (black line plot) that represents the evolution of the water level in the river over
time. Essentially, a hydrograph represents an inflow boundary condition for the floodwall
overtopping simulation. At the bottom of the hydrograph, we see the time navigation bar
to support the time-sensitive investigation of the selected scenario (Figure 18). The blue
horizontal line in Figures 14 and 15 depicts the level of existing flood-protection structures
and therefore the critical water level after which overtopping can be expected.

5. Development Process and Field of Applications of Presented Tools

As a research company, we strive to constantly improve the developed tools and inte-
grate analysis techniques through a tight external collaboration and a constant reflection
on the usability and functionality. Thus, the added value of the presented tools and their
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visualization techniques lies in constant feedback sessions conducted with domain experts
and future users of such solutions, thus verifying usefulness but also improving the func-
tionality of the developed tools. A number of such feedback sessions focusing on diverse
aspects of developed tools are documented in Arbesser et al. [35] and Cornel et al. [29,34].
For instance, Arbesser et al. [35] described the evaluation process of the VA tool supporting
2D visualizations conducted with domain experts from the energy sector, whereby the
focus was on usability of integrated 2D visualization solutions for data exploration and
quality assessment of multiple energy-related time series data (e.g., data on power pro-
duction, sensor data on meteorological variables). In summary, the domain experts found
the concerned visualization solutions as suitable for visually exploring multiple datasets
and presenting the data quality problems to other stakeholders. Additionally, the efficient
overview of hierarchies were found to be effective in supporting argumentation of data
quality problems to data providers. In Cornel et al. [29], the evaluation of the VA tool
supporting 2D and 3D visualizations was done in close collaboration with domain experts
working in the field of flood management. In addition to a discussion on best water surface
reconstruction approaches, the experts generally welcomed the integrated visualizations
of flow directions and high velocities through a 3D view. In Cornel et al. [34], the eval-
uation was conducted with flood manager and logistics experts, where they were asked
to interpret different visualization results of object-centered vulnerability and evaluate
their usefulness and readability. In general, they found the mapping of water levels onto
the building facades as a particularly useful and visually descriptive feature on possible
building-level damages. Likewise, the interactive 2D cell-based chart depicting different
vulnerability-sensitive scenarios was seen as intuitive and well suited for exploring the
entire scenario pool, suitable even for communication to non-professionals. Essentially,
both solutions are a result of several years of research projects with our partners from the
industry. All the features of developed systems are attentively tailored, allowing research-
based further development and customer-based customization of developed analytical
ensembles. In short, the visualization/analytical solutions offer the subsequent users of the
technology the opportunity to participate directly in the development process to ensure
that the developed solution can be well integrated into the existing work processes.

The pool of potential (and existing) use cases and related users of the tools is wide.
In case of the VA tool supporting time series investigations, the majority of the existing
use cases lies in applied industrial research. More specifically, the tool was commonly
used in automotive engineering, industrial manufacturing, and the energy sector. In
this context, the focus was, for example, on increasing the efficiency and effectiveness of
tasks such as the optimization of engine designs by analyzing multiple time series data
originating from numerous simulation runs. Some other use cases concern the control
and optimization of manufacturing processes in metal industry, along with the ability
to identify potential for optimization in forecasts and power grid operation. All of the
tasks involved complex and high-dimensional data such as technical indicators, process
parameters, and time series of energy production and consumption. As mentioned before,
those are industrial applications. However, great application potential lies in climate and
environmental research, which was demonstrated in this paper.

In case of the VA tool supporting flood and storm water management and flood-
response planning, the main application lies with cities and municipalities to make deci-
sions on disaster control plans, structural measures for flood protection, as well as for the
preparation of evacuation plans. Local flood forecasts and alarm systems for industrial
companies, but private individuals as well, are also of great importance with regard to their
personal surroundings, office buildings, and homes, and are, as such, another relevant area
of application. In addition, up-to-date local information on potential floods supports flood
protection personnel in coordinating construction work to protect important infrastructure.
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6. Conclusions

We have presented and discussed a number of application case studies in the envi-
ronmental domain that explore the potential of using different interactive visualizations
offered by Visual Analytics (VA) tools for data exploration and sense making. On the
one hand, we used 2D visualizations in VA to analyze diverse multivariate attributes of
meteorological time series data. On the other hand, we deployed tightly integrated 2D and
3D visualizations in VA to investigate complex attribute characteristics of spatiotemporal
data pertaining to flood management. In both cases, the performance and computational
capacities of the used interactive visualization options have proven to be invaluable given
the domain tasks and the data type at hand.

When dealing with meteorological time series data, interactive linked 2D visualiza-
tions were found to be a powerful and a useful tool for addressing intricacies of such an
abstract problem space. Additionally, the perceptive and highly responsive multi-view
structure of deployed computational cockpits allowed us to simultaneously investigate
a number of features native to the underlying data and to further define and apply a
number of event-based and time-based filters. This allowed us to go beyond the obvious
observations detected on a higher level, such as the simple annual progression of concerned
meteorological parameters. For instance, we were able to detect fine-grained diverging
trends, hidden periodic behaviors, significant threshold violation trends, and discrepancies
in values and amplitudes, by categorizing seasonal and diurnal patterns and by observing
inexplicit behavior events for concerned parameters. This was further done at various
levels of granularity to gain novel and deeper insights on the current state of urban-level
overheating.

In contrast, when exploring the flood-related spatiotemporal data, by combining the
interactive 3D views of data with 2D analytical displays, we enhanced our visual perception
of phenomena that inherently occur in a 3D physical space and thus have a strong spatial
association. Such innovative integrated solutions were found to be authoritative when
dealing with dynamically evolving scenarios and events. By further utilizing the integral
intuitive visual control for spatial and temporal elements (i.e., navigation, rotation, zooming,
and time-based progression), we were able to deal with occlusions and potential visual
distortions in each scenario and its time sequence. This allowed us to have a more perceptive
view on the simulated flood-related events and their far-reaching impacts and further
uncover hidden and occluded time-sensitive and location-sensitive events that would
otherwise remain undetected.

The above-mentioned advantages and applications of VA methodologies in the en-
vironmental domain could profoundly affect the way we approach the analysis of such
phenomena in the future. In the case of climate research, the resulting insights may serve as
a basis for general awareness rising, but also priority planning of mitigation measures based
on the most critical localities (i.e., the most affected cities and regions). In case of flooding
research, the resulting insights may serve as a basis for future decision-making on disaster
control plans, structural measures for flood protection, as well as for the preparation of
evacuation plans.
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